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Abstract The objective of the present study was to
identify favourable exotic Quantitative Trait Locus
(QTL) alleles for the improvement of agronomic traits in
the BC,DH population S42 derived from a cross be-
tween the spring barley cultivar Scarlett and the wild
barley accession ISR42-8 (Hordeum vulgare ssp. spon-
taneum). QTLs were detected as a marker main effect
and/or a marker X environment interaction effect
(M X E) in a three-factorial ANOVA. Using field data
of up to eight environments and genotype data of 98
SSR loci, we detected 86 QTLs for nine agronomic
traits. At 60 QTLs the marker main effect, at five QTLs
the M x E interaction effect, and at 21 QTLs both the
effects were significant. The majority of the M X E
interaction effects were due to changes in magnitude and
are, therefore, still valuable for marker assisted selection
across environments. The exotic alleles improved per-
formance in 31 (36.0%) of 86 QTLs detected for agro-
nomic traits. The exotic alleles had favourable effects on
all analysed quantitative traits. These favourable exotic
alleles were detected, in particular on the short arm of
chromosome 2H and the long arm of chromosome 4H.
The exotic allele on 4HL, for example, improved yield
by 7.1%. Furthermore, the presence of the exotic allele
on 2HS increased the yield component traits ears per m?
and thousand grain weight by 16.4% and 3.2%,
respectively. The present study, hence, demonstrated
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that wild barley does harbour valuable alleles, which can
enrich the genetic basis of cultivated barley and improve
quantitative agronomic traits.
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Introduction

Based on the promising results of advanced backcross
quantitative trait locus (AB-QTL) analyses conducted in
tomato, Gur and Zamir (2004) proposed a new para-
digm in plant breeding: the use of natural variation
present in the wild relatives of modern crop plants to lift
yield barriers in plant breeding. They predicted that for
crops with a rather narrow genetic basis, but rich bio-
diversity resources, the introgression of exotic germ-
plasm could lead to dramatic improvements in yield and
other quality traits. For barley, the beneficial effect of
exotic genes on biotic (Backes et al. 2003; Fischbeck and
Jahoor 1991; Zeller 1998) and abiotic (Jefferies et al.
1999) stresses and to some extent on quality traits
(Erkkild 1998) has already been demonstrated. The po-
tential use of wild germplasm for the improvement of
agronomic traits, however, is still a matter of contro-
versy. Few studies on yield improvement have so far
attempted to work with exotic germplasm, since the
majority of genes present in exotic germplasm have
strong negative effects on agronomic performance. As
such, the challenge remains to identify favourable exotic
alleles and to introduce them into breeding programs.
As a modification of the QTL mapping approach,
Tanksley and Nelson (1996) have developed the AB-
QTL strategy, particularly suitable to unmask valuable
exotic alleles and to introgress them into elite breeding
material. Since QTL detection is carried out in advanced
backcross populations, problems associated with con-
siderable phenotypic variation and linkage drag in
interspecific crosses are reduced. So far, several reports
on the application of the AB-QTL strategy are available
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for tomato (Tanksley et al. 1996; Fulton et al. 1997,
2000, 2002; Bernacchi et al. 1998); rice (Xiao et al. 1996,
1998; Moncada et al. 2001; Brondani et al. 2002; Sep-
tiningsih et al. 2003; Wu et al. 2004); maize (Ho et al.
2002); pepper (Rao et al. 2003); wheat (Huang et al.
2003, 2004; and barley (Pillen et al. 2003, 2004; Matus
et al. 2003; Li et al. 2004). The favourable effects of the
wild barley accession ISR101-23 on yield in two barley
feeding varieties recorded by Pillen et al. (2003, 2004)
encourage further investments in the development of
AB-populations for the genetic exploitation of diverse
exotic barley germplasms. The demonstrated genetic
diversity in wild barley (Hordeum vulgare ssp. sponta-
neum, Turpeinen et al. 2001; Baek et al. 2003) suggests a
not yet exploited wealth of novel exotic alleles.

Therefore, the aim of the present study was to iden-
tify favourable exotic alleles in a BC,DH population
(S42) derived from a cross of the malting barley cultivar
Scarlett with the wild barley accession ISR42-8 from
Israel. Favourable effects of the exotic donor accession
ISR42-8 on disease resistances in S42 have already been
demonstrated by von Korff et al. (2005).

Materials and methods
Plant material

The development of the population S42 with 301
BC,DH lines originating from the cross of the German
spring barley variety Scarlett with the Israeli wild barley
accession ISR42-8 is described in detail in von Korff
et al. (2004).

Molecular characterisation

The BC,DH population was genotyped with 98 SSR
markers as described in von Korff et al. (2004).

Phenotypic evaluation of agronomic traits

Phenotypic evaluation of yield and yield component
traits of the population S42 was carried out under field
conditions at four different locations during the seasons
2003 (03) and 2004 (04). The test locations were the
experimental station Dikopshof (D03, D04, University
of Bonn, West Germany), and the breeders’ experimental
stations in Gudow (GO03, GO04, Nordsaat Saatzucht,
North Germany), Irlbach (103, 104, Dr. J. Ackermann,
South Germany) and Morgenrot (M03, M04, Saatzucht
Josef Breun, East Germany). The field experiment was
designed in randomised plots without replications. As a
control, the recurrent parent Scarlett was tested with 20
replications per block. Net plot sizes (5.0-9.0 m?), seed
density (300-330 kernels/m?), nitrogen fertilization (60—
80 kg N/ha) taking into account the N,;, content in the
soil, and field management were in accordance with the

local practice. The grain was harvested with a small plot
harvester at maturity. The recorded traits and methods
of measurement are listed in Table 1.

Statistical analyses

Statistical analyses were carried out with SAS version
9.1 (SAS Institute 2003). Genetic correlation between
trait values were calculated with the Is means of BC,DH
lines averaged across environments. The detection of
QTLs was carried out using the following mixed hier-
archical model in the GLM procedure:

Yijgm = 0+ M; + Li(M;) + E; + M; X E + ity

where p is the general mean, M, is the fixed effect of the
ith marker genotype, L(M,) is the random effect of the
jth BC,DH line nested in the ith marker genotype, Ej is
the random effect of the kth environment, M;x Ej is the
random interaction effect of the ith marker genotype
with the kth environment, €, is the error of Yy,
Marker main effects and MXxE interactions are inter-
preted as putative QTLs, if the P value calculated by the
Type III sums of squares is less than 0.01 (Pillen et al.
2003). Linked significant markers with a distance of
< 20 cM and showing the same effect were interpreted as
a single putative QTL, and only the most significant
marker from each group of linked loci is recorded. In
order to meet the ANOVA assumption of normality, the
data for lodging (LOF) were transformed by calculating
the inverse of the square root. The relative performance
of the homozygous exotic genotype (RP[Hsp]) was cal-
culated as described in von Korff et al. (2005). The ge-
netic variance explained by a marker (R3,), and by an
MXE interaction (R3, « z) was calculated as follows:

Ry = SQu/SQy. Rirr = SQur/SQ,

SQyus and SQj, « g correspond to the sums of squares of
M and Mx E. SQ, was calculated as the type III sums of
square of the BC,DH lines in the following ANOVA
model:

Yijk = M+Li+Ej+3jik,

where L; is the fixed effect of the ith BC,DH line and E;
is the random effect of the jth environment. SQ, was
calculated for every marker separately to account for the
occurrence of missing genotype data. If both, the marker
main effect and the MxE interaction effect are signifi-
cant, R* is calculated as SQx//SQg-

Results
Correlations
A total of 34 significant correlations were detected be-

tween nine traits (Table 2). The yield exhibited negative
correlations with brittleness, plant height, lodging at



Table 1 List of nine quantitative traits investigated in up to eight environments
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Abbr.*  Trait Method of measurement Value ®°  Environment tested ©

BRT Brittleness Visual assessment of brittleness as present (1) or — D03, D04
absent (2) before harvest.

EAR Ears per m? Number of ears counted from 50 cm (D03, D04), 2 x + D03, D04, G03, G04, M03
1 m (G03, G04), 1 m (MO03).

HEA Days until heading Number of days from sowing until emergence of - D03, D04, G03, G04, 103, 104,
50% of ears on main tillers. MO03, M04

HEI Plant height Average plant height measured from soil surface to — D03, D04, G03, G04, 103, 104,
tip of spike (including awns) two weeks after MO03, M04
flowering.

HI Harvest index Ratio of generative to vegetative biomass, calculated + D03, D04
from a single row of 50 cm at maturity.

LOF Lodging at flowering Visual rating of the severity of lodging at flowering,  — D03, D04, G03, G04, 103, 104,
where 1 represents no lodging and 9 represents MO03, M04
total lodging.

MAS Vegetative dry biomass  Total dry biomass above ground, collected from a + D03, D04
row of 50 cm at maturity.

TGW Thousand grain weight  Average weight of 1,000 kernels calculated from two + D03, D04, G03, 103, 104, M04
samples of 250 kernels.

YLD Grain yield Weight of barley grain, harvested per plot and dried + D03, D04, G03, G04, 103, 104,

for 1-2 days.

MO03, M04

 Data for LOF were transformed by x 2 transformation of raw data prior to ANOVA.

® The breeding goals for the investigated traits were defined according to breeding progams for spring malting barley, where (—) indicates
that a reduction and (+) that an increase of the trait values is desirable.

¢ Combination of the location [Dikopshof (D), Gudow (G), Irlbach (I), Morgenrot (M)] and the year [2003 (03), 2004 (04)].

flowering and biomass ranging from —0.31 to —0.56,
and positive correlations with ears per m? days until
heading and harvest index of 0.26, 0.33 and 0.55,
respectively. Ears per m” showed a positive correlation
with days until heading, harvest index and yield between
0.15 and 0.58 and a negative correlation with plant
height, lodging at flowering and thousand grain weight
of —0.60, —0.42 and —0.21, respectively. In order to test
the hypothesis that a high percentage of exotic germ-
plasm P[Hsp] has a negative influence on agronomic
performance, the proportion of exotic alleles in a
BC,DH lines was calculated. No strong correlations
between P[Hsp] and other traits were recorded. How-
ever, weak negative correlations of P[Hsp], were revealed
with days until heading, biomass, thousand grain weight

and yield and weak positive correlations were found
with brittleness and lodging at flowering.

QTL analysis

The ANOVA revealed 248 significant marker trait
associations with 175 marker main effects and 24 marker
environment interaction effects. For 49 markers trait
associations both, the marker main and the M x E
interaction effects were significant. Due to linkage be-
tween markers, these effects were summarised to 86
putative QTLs for nine agronomic traits (Table 3,
Fig. 1). At 60 QTLs the marker main effect, at five QTLs
the M x E interaction effect, and at 21 QTLs both effects

Table 2 Correlation coefficients

(r) according to Pearson Traits EAR HEA HEI HI LOF MAS TGW YLD P[ Hsp]
between nine traits and the
percentage of exotic germplasm  BRT —0.26 —0.24 0.32 —0.43 0.34 —0.06 0.03 —0.50 0.23
(P[ Hsp]) in the BC,DH X R EEE EEE EEE EEE EEE
population S42 EAR 0.15 —0.60 0.58 —0.42 0.10 —0.21 0.26 0.08
kS sk ek sk sksksk sk
HEA —0.46 0.43 —0.65 0.17 —0.15 0.33 —0.13
ksksk koksk skoksk * ok ksksk *
HEI —0.85 0.87 0.56 0.10 —0.56 0.02
koksk oKk skoksk sksksk
HI —0.80 —0.61 —0.09 0.53 —0.07
sesesk sesfes ek
The quantitative traits are de- LOF —0.47 —0.07 —0.55 0.14
fined in Table 1. For calculating otk *xk *
correlations, the least square MAS 0.16 ~0.31 —0.07
means of the trait performance ok *
of each BC;DH line was aver-  TGw 0.07 —0.23
aged across environments. The ok ok
significance thresholds for r va- vy p —0.35

lues are * P<0.05, ** P< 0.01,
*#%k P <0.001

skoksk
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Table 3 List of 86 putative QTLs for nine traits detected in S42

QTL? SSR Chr® Pos® Range® Bin®  Effect’ R* [Hv]" [Hsp] RP[Hsp} Cand genes*

(cM) Range % Corresp. QTL
BRT
QBrt.S42-3H.a HVITRI1 3H 49 2570 36 M 39.6 1.1 20 422 birl, br2!
QBrt.S42-3H.b  HVM62 3H 165 165 14 M 21 19 2.0 3.7
QBrt.S42-5H.a MGB338 5SH 85 85 8 M 3.8 1.8 2.0 72 Hst-7L?
QBrt.S42-6H.a Bmag6l3  6H 112 112-135 9-10 M 52 19 2.0 4.8
QBrt.S42-7H.a BMS64 7H 146 93-178 6-12 M 56 19 2.0 7.8
EAR
QEar.S42-1Ha GBMSI43 1H 162 162 14 M+1 37 7164 7179 —-15
QEar.$42-2H.a HVM36 2H 17 17 2 M+1 6.6 760.7 831.0 9.2
QEar.S42-2H.b GMS3 2H 86 6786 68 M+I 280 7383 8594 16.4
QEar.S42-3Ha MGB410 3H 65 6570 56 M 7.4 7186 6737 —13.5
QEar.S42-3H.b  HVI3GEII 3H 155 130-190 10-16 M 6.5 7834 7127  —9.0
QEar.S42-4H.a HVOLE 4H 21 2125 3 M 5.1 780.7 7086  —92
QEar.$42-4H.b MGB396 4H 95 95 8 M 5.7 759.6 820.1 8.0
QEar.S42-4H.c HVM67 4H 180 125-190 9-13 M+I 27.7 7374 853.1 157  HVBAMYxEar*
QEar.S42-5H.a MGB384 5SH 0 0 2 M 6.9 781.0 702.0 —10.1
QEar.$42-5H.b Bmag337 5H 43 2485 48 M 55 7812 7149 -85
QEar.S42-6H.a GBM1008 6H 135 112-155 9-14 M 59 7842 7248 —76
HEA
QHea.S42-1H.a GBMSI12 1H 130 130-144 13 M+I 47 721 734 1.8 Vin-H3’
QHea.S42-2H.a GBM1052 2H 42 1786 2-8 M+1 174 727 670 -179 Ppd-HI°Qhd.2.1°GMS3xHea>*
QHea.S42-2H.b EBmac4l5 2H 146 143-146 13 M+1 35 727 705 —3.0  Ebmac4l5xHea>*
QHea.S42-3H.a HVLTPPB 3H 25 2530 3 M+I 43 726 696 —42  EBmac705xHea®
QHea.S42-3H.b HVI3GEIIl 3H 155 155-175 13-15 M+1 82 729 707 —3.0  denso’
QHea.S42-4H.a HDAMYB 4H 190 180-190 12-13 M+I 63 721  73.6 2.2 Vin-H2’HVM67xHea>*
QHea.S42-6H.a Bmac3l6 6H 6 6 1 M 23 727 712 =20  HvWIxHea*
QHea.S42-6H.b EBmac624 6H 107 96-107 57 M 46 728 713 =21 eps6L.1°GMS6xHea*
QHea.S42-7H.a Bmag206 7H 19 19 1 M 3.1 726 706 =27  eps7S°
QHea.S42-7H.b BMS64 TH 146 146 8 M+1 43 727 707 =27 eps7L> BMS64xHea>

EBmac755xHea*

HEI
QHei.S42-1H.a HVABAIP 1H 144 144 13 M+1 31 816 771 =56 Vin-H3’
QHei.S42-1Hb GBMSI143 1H 162 162 14 M+I 28 805 86.1 6.9
QHei.S42-2H.a GBM1052 2H 42 1742 24 M+I 31 810 715 =117  Ppd-HI’
QHei.S42-2Hb GMS3 2H 86 80-107 79 M 148 833 736 —11.5  sdw3’, GMS3xHei*
QHei.S42-3H.a HVITRI 3H 49 2570 36 M-+I 74 81.1 1000 234  EBmac705xHei
QHei.S42-3H.b HVI3GEIIl 3H 155 130-175 10-15 M+I 199 785 920 172 denso’
QHei.S42-4H.a HVM67 4H 180 125-190 9-13 M+I 12,0 83.1 748 —10.0 Vrn-H2°> HvBamyxHei**
QHei.S42-5H.a Bmag337 5SH 43 4348 5 M 58 79.5 869 93  Qph5.1°
QHei.S42-7H.a Bmag7 TH 27 27 2 M 33 80.1  89.0 11.2
QHei.S42-7H.b  HVSSI TH 62 62 5 M 2.8 803 920 14.6
QHei.S42-7H.c BMS64 TH 146 146 8 I 09 802 839 46  BMS64xHei®
HI
QHi.S42-1H.a HVABAIP 1H 144 144 13 M 87 059 063 76
QHi.S42-1Hb GBMSI43 1H 162 162 14 M 39 060 056 —6.1
QHi.S42-2H.a HVM36 2H 17 1727 2-3 M 55 059 0.63 69  HVM36xHi*
QHi.S42-2H.b Ebmac684 2H 80 6792 68 M 99 059 063 7.6  GMS3xHi*
QHi.S42-3H.a Bmag603 3H 70 49-70 46 M 184 060 053 —12.2  Bmag209xHi*
QHi.S42-3H.b  HVI3GENI 3H 155 155-190 13-16 M 184 061 053 —12.5  denso’
QHi.S42-4H.a HVOLE 4H 21 21 3 M 22 060 057 =50  HVB23DxHi®
QHi.S42-4H.b  EBmac70l 4H 130 125-150 9-11 M 41 059 062 55
QHi.S42-4H.c HVM67 4H 180 180-190 12-13 M 127 058 063 86 Vin-H2%,
QHi.S42-5H.a Bmag357 5H 48 1248 35 M 88 0.6l 055 -86
QHi.S42-6H.a HVM74 6H 103 103-107 676 M 26 060 0.58 —43
QHi.S42-7H.a  Bmag7 TH 27 1927 1-2 M 6.5 060 053 —11.9  HVM4xH;i?
LOF
QLof.S42-2H.a GMS3 2H 8 808 7-8 M 44 27 1.6 =399  Ppd-HI’GMS3xLof®
QLof.S42-2H.b GBM1016 2H 139 139-146 12-13 M 3.5 24 39 629  Qlg2.1°
QLof.S42-3H.a HVITRI1 3H 49 2570 36 M 56 2.5 6.4 1547
QLof.S42-3H.b HVI3GEIIl 3H 155 130-175 10-15 M 202 1.9 51 1667  denso®
QLof.S42-4H.a HVM67 4H 180 180 12 M 57 2.8 1.6 —41.4 Vin-H2®,
QLof.S42-5H.a Bmag337 5SH 43 43 5 M 42 22 37 682  Bmag337xLof* Qlg5.1°
QLof.S42-6H.a HVM74 6H 103 96-107 57 M 33 22 33 471
QLof.S42-7H.a Bmag7 TH 27 27 2 M 26 23 4.1 79.8
QLof.S42-7H.b BMS64 TH 146 146 8 M 3.0 23 3.5 495
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Table 3 (Contd.)

MAS

QMas.S42-2H.a  GMS3 2H 86 67-107 69 M 84 296 252 —15.0

QMas.S42-3H.a  HVM62 3H 165 130-190 10-16 M 9.0 27.6 330 196

QMas.S42-4H.a  MGB396 4H 95 95 8 M 28 290 262 —9.8 Ebmac679xMas*
QMas.S42-4Hb HVM67 4H 180 170-190 12-13 M 49 295 262 —11.1

QMas.S42-5H.a  Bmag337 SH 43 43 5 M 68 277 326 174

QMas.S42-7H.a  Bmag7 TH 27 19-27 -2 M 41 282 340 2038

TGW

QTgw.S42-2H.a GBMI035 2H 27 1786  2-8 M 77 427 441 3.2 GMS3xTgw® HVM36xTgw*
QTgw.S42-3H.a  HVM60 3H 110 110-130 9-10 M 8.4 427 440 3.0 HVM60xTgw*
QTgw.S42-3H.b  MGB358 3H 175 165-175 14-15 M 11.8 432 416 -3.6

QTgw.S42-4H.a MGB396 4H 95 95 8 M+1 102 433 419 —33

QTgw.S42-4H.b EBmac701  4H 130 125-190 9-13 M 33.6 435 409 —59 HvBAMYxTgw’
QTgw.S42-5H.a  MGB357 SH 165 165 14 M 46 430 410 —47 Bmag337xTgw’® GMS27xTgw*
QTgw.S42-6H.a GBMI1049 6H 40 40 3 I 42 431 421 24

QTgw.S42-6H.b HVM74 6H 103 96-103 56 1 3.6 431 423  —19 Qtgw6.1°
QTgw.S42-7H.a BMS64 TH 146 146-181 812 M 8.5 43.1 414 —4.1 Bmagl35xTgw’
YLD

QYId.S42-1H.a  Bmagl05 IH 75 52-85 6-8 M 62 603 49.6 —17.7 Qyld.1.1°
QYld.S42-2H.a GBMI1035 2H 27 17-27 2-3 I 1.0 59.1 60.4 2.3 Ppd-HPP Qyld2.1° HVM36xY1d*
QYId.S42-2Hb HVTUB 2H 92 8692 8 I 1.7 59.0 60.2 2.0 GMS3 x Yid*
QYId.S42-2H.c  GBMI1016 2H 139 122-146 10-13 M 33 60.0 510 —150 HVMS54xYld®
QYI1d.S42-3H.a HVLTPPB 3H 25 2570 3-6  M+I1 137 602 399 —337 burl, btr2'
QYI1d.S42-3H.b  HVI3GENI 3H 155 155-175 13-15 M+I 9.8 60.9 519 —148 denso’Qyld.3.1°
QYld.S42-4H.a GBMIOI5  4H 170 125-190 9-13 M+I 3.1 584 625 7.1  EBmac679xYld*
QYId.S42-5H.a  Bmag337 SH 43 43 5 M 44 603 540 —104

QY1d.S42-5H.b  MGB338 5SH 85 85 8 M 2.1 60.1 539 —102 HvUDPGPPxYId*
QYId.S42-5H.c  AF04394A  5H 137 126-137 10-11 M 3.1 602 535 —112 GMS27xYld>*
QYId.S42-6H.a  Bmag613 6H 112 96-112 59 M 49 607 554 8.7

QY1d.S42-7H.a  Bmag7 TH 27 27 2 M 22 600 528 —120

QYId.S42-7TH.b  BMS64 TH 146 146 8 M 40 602 532 —11.6 EBmac755xYld?

% QTL names consist of the qualifier “Q”, the trait abbreviation, the population name, the chromosomal location and a consecutive
character to discriminate two or more QTLs per chromosome. Linked significant markers ( < 20 cM) were interpreted as one QTL.
® Chromosomal localisation of the marker
¢ Position of the listed SSR marker in ¢cM taken from von Korff et al. (2004)
4 CentiMorgan range from the first to the last significant marker in a group
¢ Genotyped markers were assigned to bins according to information by Kleinhofs and Graner (2001) and the OWB mapping population
$Costa et al. 2001, http://www.barleyworld.org). If several linked markers are significant, the bin range is given

A putative QTL was assumed in the vicinity of a marker locus, if the marker main effect (M) or the M x E interaction (I) was significant
in the 3-factorial ANOVA with P<0.01
2 R} and R(ZM % E). Proportion of the genetic variance, which is explained by the marker main effect (if Effect contains ‘M’) or explained
by the M X E interaction effect (if Effect = ‘I’), respectively.
"' east square means of trait value across all tested environments for BC,DH lines carrying the elite genotype (Hv) at the given marker
locus
' Least square means of trait value across all tested environments for BC,DH lines carrying the exotic genotype (Hsp) at the given SSR
marker locus
) Relative performance: (Hsp-Hv) x 100/Hv), where Hv and Hsp are the least square means of lines with the elite and exotic genotype,
respectively, at the given SSR marker locus
X Candidate genes or corresponding QTLs published in: 1 Franckowiak (1997), 2 Kandemir et al. (2000), 3 Pillen et al. (2003), 4 Pillen
et al. (2004), 5 Laurie et al. (1995), 6 Li et al. (2004), 7 Gottwald et al. (2004). At underlined QTLs, the exotic allele showed the same
qualitative effect as in this study.

were significant. The exotic genotype improved the trait
performance at 31 (36.0 %) of 86 QTLs. In the follow-
ing, the QTLs are presented for each trait separately.

locus increased BRT by 42.2% relative to the elite
genotype.

Ears per m”> (EAR)
Brittleness (BRT)
For EAR, eleven QTLs with a marker main effect were

For BRT, the analysis revealed five QTLs with marker
main effects located on chromosomes 3H, 5H, 6H and
7H. The exotic allele was responsible for brittleness at all
detected QTLs. The QTL QBrt.S42-3H.a exerted the
strongest effect on brittleness. This QTL explained
39.6% of the genetic variance and the exotic allele at this

detected on all chromosomes with the exception of 7H.
At four loci the marker main effect and the M x E
interaction effect were significant. At four QTLs the
exotic allele increased EAR by up to 16.4% at
QEar.S42-2H.b. The latter QTL explained 28.0% of the
genetic variance. At the remaining QTLs, the exotic



1226

M 1H 2H 3H 4H 5H 6H 7H
MGB402 MGB384 E
- Bmac316 ea
N QEar QHi mac
GMsaI HVM36 :I QHeaQYid | HVM40 BMS02 :IQHea
$53707 HVLTPPB HVOLE Bmag200
GBM1035 | QEar Bmacl63
GBM1007 QYld QTgw HVB23D B QHi Bmag7 fJQHei QHi
EBmac705 QEar QHei
HVKNOX QLof QMas
GBM1042 . Bmag337 [JQLOf QMas ;1049 f QTgw Qvid
GBM1052 | QHea QHei | avrri | QHei QLof | HVPAZXG
Fs0  MGB325 QBrt EBmac603
HVALAAT MGB391 Qe HVMI13 Bmag357 mac603
ar
BHVN;?(]) ;/IGB4610(; ‘ GMS89 HVSS
ma,; H mag
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Fig. 1 QTL map of the population S42 showing 86 putative QTLs
detected for nine agronomic traits. The putative QTLs are
indicated to the right of the SSR marker, which showed the

allele was associated with a reduced number of EAR of
up to 13.5% at QEar.S42-2H.c.

Days until heading (HEA)

Ten QTLs for HEA were located on all chromosomes
with the exception of chromosome SH. All loci revealed
a significant marker main effect, while seven loci exhib-
ited in addition a significant M X E interaction effect. At
eight QTLs the exotic allele reduced the number of days
until heading. At the QTL QHea.S42-2H.a, explaining
17.4% of the genetic variance, the exotic allele was
associated with a reduced heading time of 7.9%.

Plant height (HEI)

Eleven QTLs were detected for HEI. Six of the ten QTLs
with marker main effect also exhibited an M x E inter-
action effect. At one QTL only the M x E interaction
effect was significant. At four QTLs the exotic allele
displayed a desirable decrease in plant height of up to
11.7% (QHei.S42-2H.a). At seven QTLs the exotic allele
increased plant height by up to 23.4% (QHei.S42-3H.a).
A maximum of explained genetic variance was found at
QHei.S42-3H.b (19.9%).

highest F-value of a group of linked significant markers (see
Table 3). Trait abbreviations of QTLs follows Table 1

Harvest index (HI)

For HI, twelve QTLs with a marker main effect were
identified on all seven chromosomes. At five loci the
exotic allele increased HI by up to 8.6% (QHi.S42.4H.c¢).
At seven QTLs, the exotic allele decreased HI. The
strongest QTLs, QHi.S42.3H.a and QHi.S42.3H.b, ex-
plained 18.4% of the genetic variance each and reduced
HI by 12.2% and 12.5%, respectively.

Lodging at flowering (LOF)

Nine QTLs with a marker main effect were detected for
LOF on chromosomes 2H to 7H. At two QTLs,
QLof.S42-2H.a and QLof.S42-4H.a, which explained
4.4% and 5.7% of the genetic variance, the exotic allele
reduced lodging by 39.9% and 41.4%, respectively. At
the remaining QTLs the exotic allele increased lodging
by up to 166.7% (QLof.S42-3H.b).

Vegetative dry biomass (MAS)
For the trait MAS, six QTLs with marker main effects

were detected on chromosomes 2H to 5SH and 7H. At
three QTLs the exotic allele increased MAS by up to



20.8% at QMas.S42-7H.a. A maximum of explained
genetic variance was found at QMas.S42-3H.a (9.0%).

Thousand grain weight (TGW)

Nine QTLs were detected for TGW and located on
chromosomes 2H to 7H. For seven QTLs the marker
main effect, for two QTLs only the M X E interaction
effect and for one QTL both effects were significant. At
two QTLs, QTgw.S42.2H.a and QTgw.S42-3H.a, the
exotic allele increased TGW by 3.2% and 3.0%,
respectively. At the remaining QTLs the exotic allele
reduced TGW. A maximum of explained genetic vari-
ance was found at QTgw.S42-4H.b (33.6%).

Yield (YLD)

Altogether 13 QTLs for yield were located on all seven
chromosomes. Eleven loci exhibited a significant marker
main effect, two loci a significant M x E interaction and
three loci both, a marker main and a M X E interaction
effect. The exotic allele increased yield at three QTLs by
up to 7.1 % (QY1d.S42-4H.a). At the majority of QTLs
the exotic allele reduced grain yield by up to 33.7%
(QYI1d.S42-3H.a). A maximum of explained genetic
variance was found at QY1d.S42-3H.a (13.7%).

Discussion
QTL analysis: statistical model

The QTL model used in this study accounted for M x E
interaction and thereby provided a test for estimates
regarding the relative importance of the QTL by envi-
ronment interaction in the total genetic variation.
According to Haldane (1947) genotype environment
interactions have only important implications for mar-
ker assisted selection if genotypes switch ranks from one
environment to another. In this study, several M x E
interactions were obviously crossover interactions, with
favourable effects of the exotic allele in some environ-
ments, but negative effects in other environments (indi-
cated with ‘I" in Table 2). However, the majority of
M x FE interaction effects (80.7%), coincided with mar-
ker main effects (‘M + I’ in Table 2) and were only due
to changes in the magnitude of the effects. These QTLs
may, therefore, still be used for marker assisted selection
across environments. Compared to Pillen et al. (2003
and 2004), the factor BC,DH line nested in the marker
genotype was included into the model. This factor ac-
counted for the variation within the two genotype clas-
ses at a marker locus due to the presence of additional
introgressions in the BC,DH lines. The inclusion of this
additional factor allowed us, thus, to reduce the residual
variance in the ANOVA and to increase the power of
QTL detection.
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QTL analysis: comparison with candidate genes and
other QTL analyses in barley

The results of the present QTL analysis in S42 were
compared with studies of candidate genes in barley and
three AB-QTL analyses carried out in barley by Pillen
et al. (2003, 2004) and Li et al. (2004). Pillen et al. (2003,
2004) conducted two separate AB-QTL analyses to as-
sess agronomic performance in two BC,F, populations
‘A101” and ‘H101’ derived from crosses between the wild
barley accession ISR101-23 with the feeding barley cul-
tivars Apex (A) and Harry (H), respectively. Li et al.
(2004) conducted an AB-QTL analysis in a BC;DH
population derived from the spring barley cultivar
Brenda and the exotic accession HS213. For 48 of 86
QTLs detected in this study, at least one corresponding
quantitative or qualitative locus from the literature was
recorded (Table 3). Although the donor and recipient
germplasm differed between the present and the above
mentioned AB-QTL studies, the exotic alleles exhibited
the same qualitative effect at 31 out of 43 (72.1%) cor-
responding QTL locations. The exotic alleles are thus
often similar in their effects and clearly different from
the elite alleles. The effectiveness of the exotic intro-
gressions in different genetic backgrounds gives a first
indication that alleles from these donors might not yet
be present in adapted germplasm.

The QTLs for different traits were often mapped on
the same or adjacent locations, forming several clusters
(Figure 1). The strong effects of exotic introgressions on
chromosome 2H on almost all analysed quantitative
traits was also found by Pillen et al. (2003, 2004) and Li
et al. (2004). And at the QTL on chromosome 4H the
exotic allele increased EAR, HI and YLD and decreased
HEI, LOF, MAS and TGW. These findings were in
agreement with the reported positive correlations be-
tween EAR, HI and YLD and the negative correlation
of EAR with HEI. In the following, the QTL results for
the analysed traits will be discussed separately.

Brittleness

Wild barley carries two complementary and dominant
genes on chromosome 3H, Btrl and Btr2, for the for-
mation of a brittle rachis, whereas cultivated barley
carries recessive alleles at either of the loci, resulting in a
non-brittle rachis (Franckowiak 1997). We detected a
corresponding major QTL (QBrt.S42-3H.a) on the short
arm of chromosome 3H, albeit spanning 45 cM. This
QTL explained 39.6% of the genetic variance, while the
remaining loci had minor effects on brittleness. Indeed,
several studies have reported segregation ratios for
brittleness, which do not fit the two complementary gene
models, but suggested the presence of additional loci
(Matus et al. 2003). Komatsuda et al. (2004) detected
two minor QTLs for brittleness on chromosomes
SH and 7H coinciding with the position of the
QTLs QBrt.S42-5H.a and QBrt.S42-7H.a. The QTL on
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chromosome 5H may also be identical to the weak rachis
QTL Hst-7L detected by Kandemir et al. (2000).

Time to heading

Wild barley is characterised by early and heterogeneous
flowering, presumably as an adaptation strategy to
drought prone environments. Indeed, in the majority of
QTLs in S42, the exotic allele decreased time to heading.
The QTL QHea.S42-2H.a, explaining 17.4% of the ge-
netic variance, coincides with the major flowering QTL
on chromosome arm 2HS detected by Pillen et al. (2003)
and Li et al. (2004). The same region harbours the
photoperiod response gene Ppd-HI, which promotes
early flowering under long day conditions (Laurie et al.
1995). The QTLs QHea.S42-1H.a and QHea.S42-4H.a
mapped to the same location as the vernalisation re-
sponse genes Vrn-H3 and Vin-H2 on chromosomes 1H
and 4H, respectively (Laurie et al. 1995). It is interesting
to note, that at these two QTLs, which coincide with
known vernalisation response genes, the elite alleles re-
duced time to heading compared to the exotic alleles.
Although vernalisation response is commonly displayed
by winter forms of cereals, our data indicate, that ver-
nalisation response may have also been selected in
German spring barley cultivars as an adaptation to low
temperatures at the beginning of the vegetation period.
The QTL QHea.S42-3H.b mapped close to the denso
gene, which is known to be associated with a delay in
flowering time (Barua et al. 1993; Laurie et al. 1995).
The elite parent Scarlett carries the denso gene and as
such contributed the allele, which delayed time to
heading. Laurie et al. (1995) mapped a number of
flowering QTLs termed earliness per se (eps) QTLs,
which act independently from environmental cues. In
S42, three QTLs on chromosomes 6H and 7H could be
identified which correspond to the genes eps6L.1, eps7S
and eps7L (see Table 3).

Plant height and lodging

The majority of QTLs for lodging coincided with QTLs
for plant height according to the strong positive corre-
lation found between plant height and lodging. The
QTLs QLof.S42-2H.a and QHei.S42-2H.b, located on
the short arm of chromosome 2H, for example, reduced
lodging by 39.9% and plant height by 11.5%. A corre-
sponding candidate gene for QHei.S42-2H.b is the
dwarfing gene sdw3 which has been mapped by Gott-
wald et al. (2004). This gene conveys insensitivity to
gibberellic acid and might be homoeologous to the Rht
series of dwarfing genes in wheat (Borner et al. 1998).
Further upstream on the short arm of chromosome 2H,
Laurie et al. (1994) mapped the Ppd-HI gene in the
Igri X Triumph DH population and reported a strong
pleiotropic effect of the region on plant height. The Ppd-
H1 gene is thus a candidate gene for the corresponding

QTL QHei.S42-2H.a. The QTL QHei.S42-3H.b, which
coincides with the strongest QTL for lodging (QLof.S42-
3H.b), maps to the same genomic region as the dwarfing
gene denso. It has been shown that this gene, which is
present in Scarlett, reduces height and lodging (Bezant
et al. 1996; Yin et al. 1999). The genomic region on 4H
affecting plant height and lodging also exerted a signif-
icant effect on height in the populations A101 and H101
(Pillen et al. 2003, 2004). The exotic allele reduced height
in the present study by 10.0% in S42 and by 10.4 and
5.9% in A101 and H101, respectively.

Yield

The majority of QTLs analyses for yield and yield
component traits in barley were conducted with early
balanced populations (Hayes et al. 1993, 1996, Thomas
et al. 1995; Tinker et al. 1996; Bezant et al. 1997, Yin
et al. 1999, 2002, Marquez-Cedillo 2000), while only
four QTLs analyses have so far been conducted in ad-
vanced backcross barley populations (Matus et al. 2003;
Pillen et al. 2003, 2004, Li et al. 2004). Some QTLs in
classical QTL studies consistently mapped to the same
genomic regions despite a wide range of different
germplasms used. These are predominantly yield QTLs
identified on chromosome arms 2HS, 3HL and 6HL.
Their effect on yield are commonly explained by pleio-
tropic effects of the photoperiod response gene Ppd-H 1
on 2HS (Li et al. 2004), the dwarfing gene denso on 3HL
(Thomas et al. 1995), and linkage to the Amy! locus on
6HL (Powell et al. 1990; Bezant et al. 1997). These
genomic regions also revealed significant effects on yield
in this study (QYId.S42-2H.a, QYI1d.S42-3H.b and
QYI1d.S42-6H.a) with the favourable QTL allele con-
tributed by the elite parent. Other yield QTLs detected in
this study obviously did not coincide with yield QTLs
identified in classical QTL studies. The QTL QYId.S42-
3H.a, where the exotic allele reduced yield by 33.7%,
coincided with the major QTL for brittleness (QBrt.S42-
3H.a) and the candidate genes btr/ and btr2 on the short
arm of chromosome 3H. Further yield QTLs on chro-
mosomes 3H (QYI1d.S42-3H.b), SH (QYI1d.S42-5H.b),
6H (QY1d.S42-6H.a) and 7H (QY1d.S42-7H.b), mapped
to corresponding QTLs identified for brittleness. The
negative effect of these exotic QTL alleles on yield may,
therefore, be due to exotic alleles coding for brittleness.

A maximum yield increase of 7.1% due to the pres-
ence of an exotic allele was recorded at the QTL
QYId.S42-4H.a on chromosome 4H. Interestingly, a
comparison with other AB-QTL analyses revealed that
the QTLs with the strongest favourable effect of the
exotic allele detected in the populations A101 and H101
(Pillen et al. 2003, 2004) also mapped to chromosome
4H. Here, it is worthwhile to point out that the exotic
accession ISR101-23 used by the above mentioned
studies was also collected from Israel. Pillen et al.
(2000), however, demonstrated that ISR101-23 was
genetically different from ISR42-8 based on SSR marker



data. In addition, fragment lengths scored for all SSR
markers on 4H differed between ISR42-8 and ISR101-23
(data not shown). Further concordances of QTL posi-
tions with yield QTLs detected by Li et al. (2004) and
Pillen et al. (2003, 2004) were found on chromosome
arms 1HS, 2HL, SHL and 7HL. In all cases, negative
effects of the exotic allele were recorded. In addition, Li
et al. (2004) detected a yield QTL on chromosome 3H
coinciding with the QTL QY1d.S42-3H.b.

Yield components

In this study, the yield components ears per m> and
thousand grain weight were analysed next to harvest
index and vegetative biomass. Yield components gen-
erally show negative correlations, as it was also detected
in this study, where EAR and TGW exhibited a negative
correlation of —0.21 (Table 2). For the manipulation of
yield it is particularly interesting to find alleles, which
break these genetic correlations. Indeed, the exotic
alleles on the short arm of chromosome 2H revealed
positive effects on EAR (QEar.S42-2H.a and QEar.S42-
2H.b) and TGW (QTgw.S42-2H.a) which also resulted
in a significant yield increase (QYId.S42-2H.a and
QY1d.S42-2H.b). A second coincidence of QTLs can be
found on chromosome 4H. Here, the favourable effect of
the exotic alleles on EAR (QEar.S42-4H.c) and YLD
(QY1d.S42-4H.a) was coupled with a negative effect on
TGW (QTgw.S42-4H.b). Reciprocal effects, however,
may also arise when trait values are indirectly inferred.
This holds true for the trait HI, which was inferred from
the traits MAS and single plant yield. Accordingly,
QTLs detected for MAS on chromosomes 2H, 3H, 4H
and 7H were also significant for HI but exhibited
opposing effects on both traits.

The present study has demonstrated that wild barley
does harbour favourable alleles, which have the poten-
tial to improve quantitative agronomic traits and can
enrich the genetic basis of cultivated barley. In this
study, exotic alleles with a favourable effect on yield and
yield component traits were detected, in particular on
the short arm of chromosome 2H and the long arm of
chromosome 4H. Exotic alleles on chromosome 2H
improved the performance of the traits EAR, HEA,
HEI, HI, LOF, TGW and YLD. Similarly, exotic alleles
on chromosome 4H exhibited favourable effects on
EAR, HEI, HI, LOF and YLD. In future, the effects of
the favourable exotic alleles at the two genomic regions
on 2H and 4H are of particular interest and will be
verified (1) in a second AB population derived from the
same donor accession and (2) in near-isogenic lines
(NILs). The identification of markers linked to the
favourable QTL alleles as well as the advanced back-
cross population structure employed in this study will
allow us to rapidly isolate these QTLs in NILs. Markers
closely linked to the QTLs can be used to select against
deleterious wild characters, like brittleness, and to select
lines carrying the favourable alleles using marker
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assisted selection. In addition, pure introgression lines
(ILs) are currently generated from pre-selected candi-
date lines of the population S42 (von Korff et al. 2004).
In future, these ILs will be exploited in order to verify
the QTL effects and to systematically study the molec-
ular basis of these QTLs.
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